
International Journal of Scientific & Engineering Research, Volume 3, Issue 7, July-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

RIPD – Receiver Initiated Parent Driven Multicast
for Grid Environment
R. Abilash Joseph, M. Malleswaran, A. Radhakrishnan

Abstract— Grid applications often need to distribute substantial amount of data from root node to many other machines. This typical

communication pattern is termed as multicast. Most of the multicast methods need to maintain an optimized tree structure, based on

external network monitoring data. The dependence on network data impacts the adaptability of tree based multicast methods to the

dynamically changing heterogeneous nature of the network. In this paper a cluster based multicast algorithm RIPD (Receiver-Initiated

Parent-Driven) has been proposed.

Index Terms— Cluster Computing, High Throughput, Multicast, Receiver Initiated, RIPD

—————————— ——————————

1 INTRODUCTION

IMELY data replication is one of the most critical issues in
a data-intensive grid computing environment. The main
advantage of grid computing is its ability to serve high-

performance applications by integrating multiple computers
from various geographical locations including single com-
puters to large cluster of computers. This makes the grid envi-
ronment a highly heterogeneous and dynamically changing
environment. When a high-performance computing is to be
done in a grid environment, a substantial amount of data
should be transferred from the source to all other computers
participating in the computation [1, 2].

This communication pattern is multicast: initially the root
node or the root cluster has the data that needs to be processed
by the grid, at the end of the multicast all the nodes in the en-
vironment has a copy of the data. Multicast is used to distri-
bute large input data for parallel applications before and or
during run [2, 3]. A significant amount of processing time and
bandwidth usage is observed while distributing data to the
nodes in the grid environment [4]. The need for using grid
environment to analyze large data and do high-performance
computing is becoming increasingly popular, and needs effi-
cient multicasting.

2 DIFFERENT MESSAGE FORMATS IN MULTICAST

In a multicast operation the data to be replicated is initially
available only with the root node, and at the end of the multi-
cast operation a copy of the original data is available in all the
nodes in the environment. The data is transferred through
spanning tree (single tree or multiple trees) and random
meshes. The message transferred through the mesh or tree
contains the whole data or a part of the whole data depending
on the size of data.

Many different methods are employed for efficient multi-
casting. The major two types of multicast operation are sender-
initiated and receiver-initiated method. For small sized data,
multicast is done by sending the data as single message and
the nodes receiving the data forwards it in a spanning tree. To
multicast a large data, the data is split in to ‘n’ number of piec-
es and is sent as a stream. But the multicast depends on the
size of messages sent also, which are as described below as
STA, STP and MTP.

2.1 STA (SINGLE TREE, ATOMIC)

This method is employed when the data to multicast is small
in size. This data is forwarded to nodes through a spanning
tree, and the nodes receiving the data forwards it across the
network.

2.2 STP (SINGLE TREE, PIPELINED)

This method is employed when the data to multicast is large
in size. For such operation pipelining technique is employed
which optimizes the overall performance of the system.

Pipelining is achieved in application level by splitting the
whole message to ‘n’ number of pieces by the source node.
The indexed pieces are sent in a pipelined fashion randomly,
which is re-assembled by the receiver.

2.3 MTP (MULTIPLE TREE, PIPELINED)

The message is sliced in STP, and thus there is a freedom of
sending the message through different paths by using mul-
tiple spanning trees rather sending them through a single
spanning tree. This eventually increases the throughput of the
network. In a multiple spanning tree method, a spanning tree
can be used to forward a distinct fraction of the whole mes-
sage.

2.4 Complexities in Implementing STA, STP and MTP

STA is implemented by constructing a spanning tree over the
network; the objective is to find a tree that minimizes the
overall completion time (makespan). However, finding the op-
timum spanning tree is a tedious problem and increases expo-
nentially with the increase of nodes in the network; it turns
out to be a NP-complete problem for a basic telephone model
[6]. In STP and MTP, the message to be sent is large which
demands the need for the best spanning tree.

T

————————————————

 R. Abilash Joseph is currently pursuing ME in Embedded Systems Technolo-
gies in Anna University of Technology-Tirunelveli, India.
E-mail: abijosh@yahoo.com

 M. Malleswaran is currently working as an Assistant Professor in Dept of
Electronics and communication in Anna University of Technology-
Tirunelveli, India.
E-mail:malleshaut@gmail.com

 A. Radhakrishnan is currently working as the head of the Department of Com-
puter applications department in Anna University of Technology-Tirunelveli,
India.
Email: r_k_ngl@yahoo.co.in

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Source

 10% loss 5% loss

S

P Q

X

The best spanning tree is the one which maximizes the aver-
age number of pieces sent by the sender every time-unit
(throughput) of the network. However, maximizing the
throughput can be viewed as a relaxed problem of minimizing
the makespan. The problem of throughput maximization is a
NP-hard problem [6, 7].

3 METHODS OF MULTICASTING

In multicasting, the root node transmits data to all other nodes
in a network. Thus at the end of a multicast operation, there is
a copy of the original data in all the nodes. Optimizing a mul-
ticast operation means, to minimize the makespan. In our
work, multicasting is done for replicating large data sets used
in high-performance computing problems, thus optimizing
the multicast operation here means; to maximize the through-
put. Different methods for maximizing the throughput have
been proposed, the methods has been summarized in the fol-
lowing sections as two broad categories. First sender-initiated
methods have been summarized, followed by the receiver-
initiated methods.

3.1 IP Based Multicast

Multicast is done by employing RTP (Real-time Transfer Pro-
tocol) for message transfer and RTCP (Real-time Transfer Con-
trol Protocol) to monitor the QoS of RTP. RTP receivers pro-
vide feedback of received packets using the RTCP protocol.
This QoS information is used by the source to estimate and
adjust the transmission along various paths through a single
spanning tree. For instance if too many packets are lost in a
particular path, the sender would initiate an aggressive com-
munication over that path [8]. However, since the multicast is
performed in the IP layer, analyzing the RTCP reports is very
difficult to estimate the loss pattern. This can be easily ex-
plained by considering the simple network shown below.

Fig. 1. Simple Multicast Session.

As shown in Table I there are two extreme loss patterns and

there are infinite number of patterns between those extremes.
This is the problem with simple IP multicasting; it was recti-
fied by M-RTP by employing individual RTP and RTCP ses-
sions for every possible links in the network [9].

3.2 Split Stream Multicast

The previous method does not consider the bandwidth of the
network. In this method, instead of using a single spanning
tree, multiple spanning trees are implemented. After the
spanning trees are constructed, the data is split into many
stripes or slices or pieces. A subset of stripes is forwarded
through a particular spanning tree. In this way all the stripes
are forwarded through different spanning trees.

The sender and receiver both select the number of trees to
which they forward and receive from based on the bandwidth
of the network. By maintaining a handoff between network
bandwidth and data it is taken care that the network doesn’t
suffer from a local or global bottleneck [10].

3.3 Modeling Multicast based on Network-Performance

Nodes connected to a network through a NIC (network inter-
face card), and their speed of connectivity depends on the
connectivity speed of the NIC. For optimizing the multicast
operation, the achievable bandwidth should be effectively
used. The difference between achievable bandwidth and
bandwidth capacity is clearly explained in [11]. The main ob-
jective is to maximize the network throughput of all nodes in
the network.

The local bandwidth is often limited by the nodes connect-
ing to the network; for example the node may be connected to
a gigabit network through a fast Ethernet card, or the access
link is shared by many other computers. This is referred as a
local bottleneck; if the achievable bandwidth is limited over a
wide area network it is termed as a global bottleneck [2].

To optimize the multicast based on network monitoring in-
formation; external network monitoring systems like REMOS
[12] or Delphoi [13] should be employed exclusively. When
multicast is performed based on the network monitoring in-
formation, the network monitoring software should be availa-
ble or accessible to all nodes participating in the multicast.
Also the tools exhibit poor performance when used for large
network; if a network has N nodes, O(N2) paths should be
considered. If the network is dynamically changing; which is
very obvious in a grid environment, use of such tools is a not a
good option. Also the tools monitor the network properties;
but not the properties that are useful for the application, such
as achievable bandwidth. Converting the monitored data into
application-level details is a hard problem [13].

3.4 Sender-Initiated Multicast

3.4.1 MagPIe

The basic of this approach is to send from the root node to all
others simply by ignoring the network information. Then
based on the QoS report, resending data will be initiated. In
this method multicast is performed as two layers specified by
Inter-Cluster and Intra-Cluster graphs. Inter-Cluster graph
connects many clusters, and Intra-Cluster graph connects the

TABLE 1

THE EXTREMES POSSIBLE OF LOSS PATTERNS FOR

THE SAMPLE NETWORK IN FIG. 1.

Path Extreme1 Extreme2

S,X No loss 5% loss

X,P 10% loss 5% loss

X,Q 5% loss No loss

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

nodes within a cluster. To interface between these graphs a co-
ordinator node is employed within clusters [14]. The Intra-
Cluster graph puts a high load on the root node, which creates
an overall bandwidth bottleneck over the network.

3.4.2 MPICH-G2

MPICH-G2 is an improved version of MagPIe, in which the
nodes receiving the data forwards them through a spanning
tree, thereby reducing the overhead for the root node. MPICH-
G2 uses multilevel topology tree adapt itself to the differences
in the achievable bandwidth across the different levels of the
network. TCP over WAN acts upon TCP over a LAN and this
hierarchy is followed till the leaf nodes. Nodes are grouped
into clusters or subtrees based on their ability to communicate
with each other relative to a particular level [15].

Finding the optimal spanning tree from a set of possible
spanning trees is a difficult task. A standard high-performance
spanning tree can be constructed if the network is a homoge-
neous network. Since the network is heterogeneous and dy-
namically changing, it is hard to find the optimum spanning
tree [6, 7].

3.4.3 FPFR

Finding the optimal solution can be expressed as a linear pro-
gramming problem. But the number of constraints grows ex-
ponentially with the number of hosts. Finding the exact solu-
tion is slow and expensive [16]. The multiple spanning tree
approach in [5] determines the maximum multicast through-
put if the bandwidth of all the links between the hosts is
known apriori but uses a complicated algorithm to find the
spanning tree that achieves the maximum throughput. The
FPFR tool implements multiple spanning trees, and concur-
rently uses all the trees. These concurrent trees are termed as
multicast trees. FPFR uses repeated DFS (depth-first search) to
find the tree spanning all hosts. FPFS ‘reserves’ bottleneck
bandwidth of all links used in the tree. The links with no lef-
tover bandwidth cannot serve for new trees. This search is
repeated until all spanning trees that spans over all hosts have
been found and considered [1]. FPFR doesn’t consider the lo-
cal bandwidth capacity of the hosts into account. Also FPFR
has failed to consider oversubscription of links, which forms
capacity bottlenecks.

3.4.4 Balanced Multicasting

Balanced Multicasting is an improvement over FPFR which
considers the bandwidth capacity of the hosts in to account.
The objective is to create a balanced multicast tree. First the
individual hosts are considered and then the bandwidth is
considered for clusters of computers [17]. However, Balanced
Multicasting; like all other spanning tree based multicasting
methods, computes the optimized tree based on the network
monitoring data when the multicasting is started. The dynam-
ic nature of the network is not considered which leads Ba-
lanced Multicasting not adaptive to the changes in the net-
work.

3.5 Receiver-Initiated Multicast

As explained in the previous sender-initiated methods, find-

ing the optimized multicast trees is a hard problem. Even if
the spanning tree is carefully computed; it becomes inefficient,
as it is not adaptive to the changes in the network. Therefore
many different alternatives has been proposed based on re-
ceiver-initiated methods, in which the receiver nodes requests
for the data it requires as an alternative to the sender forward-
ing it over trees.

3.5.1 Bullet

Bullet uses an overlay mesh instead of a tree structure. The
overlay mesh delivers higher throughput and reliability when
compared to the traditional tree based methods. The data is
distributed in a strategic manner to strategic points in the
network; the receivers locate and retrieve required data from
multiple points in parallel. The data is split in to sequential
blocks by the sender, which is in turn spitted as individual
objects, which are transmitted to different points in the net-
work. Nodes receive a set of data from their parents; it is the
responsibility of the node to locate the peers that hold the
missing data [18].

3.5.2 BitTorrent

It is a peer-to-peer file transfer application, specially designed
to distribute large files efficiently. The data is logically split in
to equal sized pieces of few kb (kilo bytes) in size. A mesh is
created between the peers chosen randomly, and inform about
the pieces they possess. Then the nodes constantly update
about the new pieces they receive. The receiver nodes explicit-
ly request for the piece they require from the nodes reporting
the possession of those pieces. The peers to be requested are
selected at random from their possession report.

The best part of BitTorrent is that; the nodes are allowed to
download only if they upload pieces of data. Uploading data
acts as an incentive to the peer that gives a higher chance of
being allowed to download data [19].

3.5.3 Chainsaw

This algorithm simply works on the same way as the BitTor-
rent algorithm. It is designed mainly focusing on the live
streaming of data over a large number of hosts. Nodes con-
stantly report their window of availability to their neighbors;
these are the pieces of data they possess and willing to trans-
fer. By checking with this availability report the receivers re-
quest for the data they require.

Since this algorithm is specifically designed for real-time
data transfer like live streaming etc., if a data is not found
within a specified time period, termed as ‘fall off’ the data is
considered as lost [20].

Faster nodes download the available pieces quickly and
search for more pieces among its neighbours; if the pieces are
not available or found among the neighbouring nodes, the
faster node has to remain idle until the pieces are available in
any one of its neighbours. This idle time is cannot be compen-
sated by any means which is a major drawback found in the
random mesh based multicast if the same technique is imple-
mented in a high-performance computing environment. To
overcome this problem cluster based algorithms has been pro-
posed.

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

3.6 Clustered-Receiver Initiated Multicast

In this method the receiving nodes are clustered based on
some conditions. The cluster of nodes team up as a single unit
to download the required data from the source nodes.

3.6.1 MOB

MOB – Multicast Optimizing Bandwidth; is a clustered receiv-
er initiated multicast, in which the receiver nodes are clustered
together. Each node in the cluster requests and receives an
equal part of the total required data from peers of other clus-
ters and distributes it to the nodes in its own cluster. Thus a
single piece of data is transmitted to a cluster only once. The
data is distributed to the local peers automatically.

MOB fails to manage the static load balancing in large or dy-
namically changing heterogeneous networks [21].

3.6.2 Robber

Robber is a collective data stealing technique. The data is dis-
tributed over a random mesh and nodes ‘steal’ pieces of data
from other peers. Also the nodes team up as collective to steal
data from other clusters. The details of the nodes and the clus-
ter they belong to are made globaly available information by
using Ibis [2].

The nodes that have no more work to do; in this case if a node
has downloaded all the pieces that it should download from the
sender, it starts to steal pieces from other clusters. Thus the faster
nodes download more number of pieces for their cluster, thus
more pieces is available locally for the slower nodes [2].

3.7 Inference from different methods of Multicast

In the receiver initiated methods Bullet, BitTorrent and Chain-
saw it is proved that meshes outperform tree structures.

MOB and Robber instead of employing random meshes over
the network, clustering neighbour nodes and adding peers from
other clusters performed better than random mesh based multi-
cast methods. Thus clustering of nodes in efficient than other me-
thods of multicasting.

4 PROBLEM DESCRIPTION

In Robber, if a node requires a piece of data which is not avail-
able in its cluster; it literally means the node has downloaded
all pieces available in its cluster; which also means that the
particular node is faster than its neighbours. The unavailabili-
ty of a piece in its neighbours forces the faster nodes to be idle
until availability of that particular piece notified by any one of
its neighbours. To solve this problem, the nodes in Robber add
peers (global peers) from other clusters, so that a fast node
after finishing its work can search and download a required
piece, not available in its cluster from nodes belonging to other
clusters.

In this approach, each node is connected to a set of nodes from
other clusters, termed as global peers. If a faster node and a slow-
er node are connected as global peers, then the slow node has to
serve both its local and global peers which would grow the load
over the slow node, since it is forced to serve for both local and
global peers.

Robber uses Ibis to globalize the information about the clusters

and the nodes in the clusters. Thus each node knows the required
information about the nodes. Ibis is a third party application
which should be installed in all the computers taking part in the
multicast operation.

Though the information about the nodes and cluster are avail-
able globally, the information about the availability of a data
packet in a cluster is not readily known to any node in the system
when robber is employed. Thus the node has to probe all the
global peers connected to it, to find out the availability of the re-
quired piece of data.

To overcome the problems identified in cluster based algo-
rithms MOB and Robber, RIPD has been proposed, which will be
described in the following sections.

5 RIPD – RECEIVER-INITIATED PARENT-DRIVEN

MULTICAST

In clustered receiver initiated multicast, only the end nodes or
the receiver nodes plays an active role, whereas in RIPD the
end node’s activities are controlled and directed by their par-
ent nodes. Thus a hierarchy is maintained in between the
nodes in the grid environment. In RIPD there are cluster heads
for each and every cluster of nodes. Each cluster is partially
controlled by its cluster head, by directing the nodes in its
clusters for downloading or uploading data. Either the cluster
head notifies the node about the availability of the packet it is
requesting for or it notifies the node if some other node re-
quests for the packet it is having.

The key issues in RIPD are determining the cluster heads and
establishing connection between nodes belonging to different
clusters whenever needed.

5.1 Selecting the Cluster Head

The selection of cluster head in RIPD is based on the preferen-
tial criteria (faster nodes in RIPD). All nodes in a cluster can
directly communicate to any node within the cluster. Cluster
heads acts as the gateway for establishing connection between
nodes of different clusters, but do not interfere with the data
transfer between nodes. In this paper cluster head selection is
based on AHP [23] algorithm. AHP implements efficient me-
thods to select cluster head, and helps to minimize the number
of cluster head changes.

5.2 Establishing Connection

As RIPD is a receiver initiated multicast any data transfer is
initiated by the receiver node only. A node requests for all the
data packets available within its cluster, and thus, when no
more new packets are available within its cluster, the node
requests its cluster head to check for new packets. The estab-
lishment of connection between nodes from different clusters
has two different approaches as described below. There are
different scenarios for the same which differ by the type of
request made by the node.

5.2.1 Scenario 1

A node ‘n’ after downloading all the available packets in its
cluster requests for a packet i or a sequence of packets from i
to i+j it needs to download. This request is forwarded to the

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March-2012 5

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

cluster head. The cluster head checks for the availability of the
requested packet by forwarding the messages to other cluster
heads. From all the messages received from other cluster
heads, the cluster head selects a particular node ‘m’ from
which the data should be downloaded and initiates node ‘n’ to
establish a connection with node ‘m’.

Consider the two clusters (ni, hn ϵ C1; i = 1 to 10) and (mj, hm
ϵ C2; j = 1 to 10), the indexes of the pieces are from 1 to 100.

Pseudocode for forwarding a request:

Step 1: ni -> hn (req, 20, 40);
Step 2: hn -> hm (req, 20, 40);
Step 3: do
Step 4: hm -> mj (req, 20, 40);
Step 5: j = j + 1;
Step 6: while (j < 10)

Pseudocode for forwarding the response message:

Step 1: hm collects responses from all nodes of the form
mj -> hm (resp,p,p+q); [where p <=20; p+q => 40]
Step 2: bestNode = selectBestNode (respList, weightMatrix);
Step 3: hm -> hn (initConnection, bestNodeID);
Step 4: hn -> ni (initConnection, bestNodeID);

5.2.2 Scenario 2

A node ‘n’ after downloading all the available data packets
requests for new data packets to its cluster head. The cluster
head checks for new data packets by requesting the data pack-
ets available to be shared by other clusters. After receiving the
sequences the cluster head decides from where it should
download, and store the list of new packets for future refer-
ence.

Considering the same example of clusters described in the
previous scenario.

Pseudocode for forwarding a request:

Step 1: ni -> hn(req);
Step 2: hn -> hm(req);
Step 3: do
Step 4: hm -> mj(req);
Step 5: j = j + 1;
Step 6: while (j < 10)

Pseudocode for forwarding the response message:

Step 1: hm collects responses from all nodes of the form
mj -> hm(avail, p, q); [where p <=1; p+q => 100]
Step 2: bestNode = selectBestNode (respList, weightMa-
trix);
Step 3: hm -> hn(initConnection, bestNodeID);
Step 4: hn -> ni(initConnection, bestNodeID);

5.3 Data Transfer

When a connection is made, the receiver node directly re-
quests the sender for the pieces it needs. Thus the cluster
heads in RIPD only guides the node to make connection
whenever necessary. After a connection is made the nodes
directly communicate, transfers the required data and termi-

nates the connection when transfer is complete.
Considering the same example of clusters described in the

previous scenario. If the pieces from p to q requested by ni are
available in mj the actual data transfer takes place as follows.

Pseudocode for actual data transfer is as follows:

Step 1: ni -> mj (init);
Step 2: mj -> ni (initAck);
Step 3: do
Step 4: ni -> mj (req, p); [p is the index of the requested
piece]
Step 5: mj -> ni (data, p, actualData)
Step 6: p = p + 1;
Step 7: while (p < q)
Step 8: ni -> mj (termConnection);
Step 9: mj -> ni (termConnection);

6 RIPD – CLUSTER HEAD SELECTION

The steps of cluster head selection in RIPD algorithm is as fol-
lows. Initially the nodes of a cluster n ϵ C elects for the cluster
head node hn for C, where hn ϵ nC. The elected node serves as
the hn for C until there are 2 nodes in the cluster including the
cluster head. Thus if there are only two nodes (n,hn) in cluster
C, hn continues to serve as the cluster head for C. The election
is based on the factors that directly influence the network per-
formance; the speed of node’s NIC (Network Interface Card)
and its processing speed. The node scoring highest weight in
AHP wins the chance to serve as hn.

Calculate overall local weights of nodes based on the deciding
factors (speed of NIC and processing speed). If the cluster C has k
number of nodes, there are 2k numbers of deciding factors which
are

NIC speed (α) = {a1, a2, a3, ..., ak}
Processing Speed (β) = {p1, p2, p3, ..., pk}

From these values the weight matrix is derived, the hn is se-

lected based on the weight matrix. Weight matrix is updated
whenever a new node joins the cluster. The node with highest
weight in the weight matrix serves as the hn. If the head node
leaves the network for any reason, the node with next high value
is selected as hn.

7 SEQUENCE WINDOWS AND MESSAGE FORMATS

The important feature of RIPD is its ability to make connection
dynamically and also its ability to serve new nodes instantly
with the same efficiency. The nodes are connected based on
the request it makes. The nodes request for new pieces to
download whenever they find no new pieces to download
from their own cluster. There are different message formats
used in RIPD as explained as follows. Before describing about
the message formats, some introduction has been given about
the different windows maintained by the nodes for ease of
communication.

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March-2012 6

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

7.1 Window of Initiation

This is the list of pieces the node is bound to download from
the source node, only after downloading all the pieces in the
window in initiation a node can seek for new pieces from the
other nodes.

7.2 Window of Possession

This window shows the sequence number of the pieces down-
loaded by the node.

7.3 Window of Availability

This is the sequence number of pieces the node is willing to
upload to any node that needs them. A node will share only a
single set of pieces from i to i+j. For any given time a node will
not list different sequence of pieces in the available window.

7.4 Window of Interest

This is the sequence number of pieces a node is willing to
download from other nodes.

7.5 Window of Desire

If a node finds a node willing to send the packets it is interest-
ed to download, a node forms a window of desire, which is
usually a subset of window of interest and downloads pieces
listed in this window.

Usually a node desires and downloads a set of continuous
pieces, rather downloading everything in random fashion. This is
because just mentioning the start and end of any sequence men-
tioned above will be less expensive when compared to specifying
the index of each and every piece.

The message formats mentioned in Table 2 are used by the
nodes for efficient communication between nodes to share the
information about the status of any node participating in the mul-
ticast.

All the messages mentioned in Table 3 are sent and received

by every node in the grid environment but initiate connection is
used only by the hn to direct the receiver node to download piece
from the node mentioned in nodeID. This is because, all the other
messages are transferred to nodes in other clusters using hn as a
gateway, so that the hn can guide the nodes to download piece
from a node of its choice, so that the makespan is reduced.

7 SIMULATION SETUP AND RESULTS

RIPD is evaluated under four different scenarios with changes
in the number of nodes and the size of clusters. There are dif-
ferent test cases which are introducing new nodes during the
multicast, simulate failure by killing many nodes from the
environment, and also by killing almost 70% of the cluster
heads during multicast to prove the robustness of the algo-
rithm. The simulation setup consists of nodes with 1 MB/s
network speed. There are 3 processing elements used in each
node capable of processing at 327 or 377 or 477 MIPS. The
processing elements are shared unevenly so that some nodes
will have a higher processing speed than the others. Each clus-
ter is employed with a hub node which is used to direct traffic
control between different clusters.

When a multicast is initialized using RIPD, the algorithm
starts actual multicast only after selecting cluster heads for each
clusters in the grid, after which the performance gradually in-
creases to an average of 6.4 MB/s. This performance is plotted in
the Fig. 2.

Fig. 1. Initializing multicast using RIPD.

To test the robustness and flexibility of RIPD, some test cases
are performed during the simulation test. First the flexibility of
RIPD is tested by introducing 50% more new nodes during the
multicast.

Fig. 2. Performance of RIPD - Addition of new nodes.

0

1

2

3

4

5

6

7

8

1
2
5

1
7
3

2
2
1

2
6
9

3
1
7

3
6
5

4
1
3

4
6
1

5
0
9

5
5
7

6
0
5

6
5
3

7
0
1

7
4
9

7
9
7

th
ro

u
gh

p
u

t(
M

B
/s

)

Time (sec)

0

1

2

3

4

5

6

7

8

1
2
0
0

1
2
2
7

1
2
5
4

1
2
8
1

1
3
0
8

1
3
3
5

1
3
6
2

1
3
8
9

1
4
1
6

1
4
4
3

1
4
7
0

1
4
9
7

1
5
2
4

1
5
5
1

1
5
7
8

th
ro

u
gh

p
u

t(
M

B
/s

)

Time (sec)

TABLE 2

MESSAGE FORMATS USED IN RIPD.

Messages Format

Start, Connection Ack,

Blank Request, Finish, Stop

opcode(byte)

Request Pieces, Available opcode(byte), piece start in-

dex(integer), end index(integer)

Desire opcode(byte), piece index(integer)

Initiate Connection opcode(byte), nodeID(integer)

Data opcode(byte), piece index(integer),
data field(few kb)

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March-2012 7

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

In our test case 100 nodes in the network is increased to 150
nodes. The performance drops upon the addition of new nodes,
but stabilizes and quickly rises to the average performance as
shown in the Figure 2.

From the above test case it is clear that RIPD is flexible to dy-
namic changing environments where new nodes joins multicast
often. Since the recovery time of RIPD is low there will not be a
big impact of the addition of new nodes to the multicast.

The robustness of RIPD should be proved, as there is a possi-
bility of nodes to disconnect from the grid during multicast. To
test such case, random node failure is initiated to the network.
Thus a mass node failure which also includes the head nodes is
introduced in the network. In our test case, for a total number of
200 nodes, 100 nodes including 20 cluster head are selected at
random and disconnected from the network. The performance of
RIPD on such a case is shown in Figure 4, where it is clear that the
overall performance is affected for around 300 seconds.

Fig. 3. Performance of RIPD - Node failure.

This test case is to test the robustness of RIPD when many
number of cluster heads fail all of a sudden. To test such a case a
mass failure of cluster heads is introduced in the network. When
20 cluster heads of the total 30 clusters are mad to fail in the net-
work, the network experiences a failure condition for less than 60
seconds. Since AHP algorithm used, the next possible cluster
head is already known, the failure time also constitutes to the
time taken for the new cluster head to gather information about
the cluster.

Fig. 4. Performance of RIPD - Cluster head failure.

The performance of RIPD has been compared with BitTorrent
and Robber algorithms under different environments by chang-
ing the speed of the NIC of nodes participating in multicast, by
changing the size of data to multicast. The performance compari-
son based on these different test cases has been discussed below.

Fig. 5. Performance comparission of RIPD BitTorrent and Robber based on

the number of nodes taking part in the multicast.

In the simulation environment the root node sends 100 MB of

data to all other nodes, the intra cluster speed is set to 500 KB/s
and the inter cluster speed is set to 100 KB/s.

Fig. 6. Performance comparission of RIPD BitTorrent and Robber in a

homogeneous environment, based on the number of nodes in a cluster for a total

number of 96 nodes.

In the simulation environment the root node sends 1 GB of da-

ta to all other nodes. Each node has a 100 Mbit NIC. Nodes in the
same cluster communicate directly with each other, whereas the
nodes of different cluster has to connect via the root node. After
the connection has been established the nodes communicate di-
ectly with the help of NIC address. There is no constraint related
to the speed of node and hence, a connection is established
whenever there is a free node in any cluster. Thus the communi-
cation is faster and the troughput also shoots up to high values.
The same cannot be expected in a heterogeneous network as the
nodes are of different speed and hence the hn cannot make in-
stant connection, a node has to wait for a suitable node of other
cluster to be free to download data.

0
1
2
3
4
5
6
7
8

2
0
0
0

2
0
3
4

2
0
6
8

2
1
0
2

2
1
3
6

2
1
7
0

2
2
0
4

2
2
3
8

2
2
7
2

2
3
0
6

2
3
4
0

2
3
7
4

2
4
0
8

2
4
4
2

2
4
7
6

th
ro

u
gh

p
u

t(
M

B
/s

)

Time (sec)

0
1
2
3
4
5
6
7
8

7
2
5

7
5
1

7
7
7

8
0
3

8
2
9

8
5
5

8
8
1

9
0
7

9
3
3

9
5
9

9
8
5

1
0
1
1

1
0
3
7

1
0
6
3

1
0
8
9

th
ro

u
gh

p
u

t(
M

B
/s

)

Time (sec)

0

2

4

6

8

25 50 100 200

th
ro

u
gh

p
u

t
(M

B
/s

)

Number of Nodes

BitTorrent

Robber

RIPD

0

20

40

60

80

100

120

2 4 8 16

th
ro

u
gh

p
u

t
(M

B
/s

)

Number of Nodes per Cluster

BitTorrent

Robber

RIPD

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March-2012 8

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Fig. 7. Performance comparission of RIPD BitTorrent and Robber in a

heterogeneous environment, based on the number of nodes in a cluster for a total

number of 96 nodes.

In this environment the 26 nodes are enabled with 500KB/s
NIC, 35 nodes are enabled with 10 Mbit NIC and the other 35 is
enabled with 100 Mbit NIC. There is a huge variation in the con-
necting speed of nodes in the environment. The root node sends 1
GB of data to all other nodes and the performance comparission
is shown in Figure 8.

7 CONCLUSION

The time of completion, makespan of large-data multicast de-
pends on the achievable bandwidth than can be obtained be-
tween the interconnecting links of a network. Perfect QoS can
be provided if the control messages are received properly. But
as we saw the drawback in the IP Multicast method; even after
knowing the exact tree structure and the losses at the destina-
tion nodes, finding the exact loss pattern was not possible. In
sender-initiated methods the nodes are arranged across a tree
structure and data is forwarded through the tree structure;
which may sound good, but may push the network to a local
or global bottleneck condition. To provide efficient multicast
an optimized spanning tree must be calculated, it is a NP-
Hard problem if the spanning tree is optimized to maximize
the throughput. Also it is hard to find the best spanning tree
for a varying and dynamically changing network.

To overcome these problems found in sender-initiated algo-
rithms receiver-initiated algorithms has been proposed. In receiv-
er based methods random meshes are constructed among the
receiver nodes; the receivers request the pieces of data they re-
quire either from the root node or the neighbor nodes. The basic
idea is to use the actual network links among nodes to multicast
by automatically adapting to the achievable bandwidth.

The use of meshes gives rise to a new problem of letting the
faster nodes to be idle due to the unavailability of data in its
neighbor nodes and thus cluster based algorithms has been pro-
posed.

In this paper new of introducing cluster head nodes in every
cluster of nodes has been proposed. The basic cluster head selec-
tion method has been implemented in this approach. The cluster
head are used to make connections dynamically between nodes
from different clusters based on their connection speed. Thus the
senders from other clusters do not suffer from overhead of serv-
ing nodes in local and global clusters simultaneously. The infor-

mation about the nodes and clusters are available globally and
hence the use of software applications like Ibis has been avoided.

RIPD improves the makespan of multicast without the need
of external network information. It has proved its robustness in
network failure and also it works well in the dynamically chang-
ing environment also. This algorithm can be improved by intro-
ducing a high level cluster head selection method by checking the
reliability of the nodes, and more parameters can be accounted
for making dynamic connections between nodes of different clus-
ters.

REFERENCES

[1] R. Izmailov, S. Ganguly, and N. Tu, ―Fast Parallel File Replication in Data
Grid,‖ Proc. Future of Grid Data Environments Workshop (GGF-10), Mar.
2004.

[2] M. den Burger and T. Kielmann,―Collective Receiver-Initiated Multicast for
Grid Applications‖ IEEE Transactions on Parallel and Distributed System,
vol. 22, no.1, pp. 231-244, Feb 2011, doi: 10.1109/TPDS.2010.76. (IEEE
Transactions).

[3] V. Kumar, A. Grama, A. Gupta, and G. Karypis. ―Introduction to Parallel
Computing.‖ The Benjamin/Cummings Publishing Company, Inc., 1994.

[4] H. Rangwala, E. Lantz, R. Musselman, K. Pinnow, B. Smith, and B.
Wallenfelt, ―Massive Parallel BLAST for the Blue Gene/L,‖ Proc. High
Availability and Performance Computing Workshop (HAPCW ’05), Oct.
2005.

[5] O. Beaumont, L. Marchal, and Y. Robert, ―Broadcast Trees for
Heterogeneous Platforms,‖ Proc. 19th Int’l Parallel and Distributed
Processing Symp. (IPDPS ’05), Apr. 2005.

[6] M. R. Garey and D. S. Johnson. Computers and Intractability, ―A Guide to
the Theory of NP-Completeness.‖ W. H. Freeman and Company, 1979.

[7] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. ―Pipelining
broadcasts on heterogeneous platforms.‖ International Parallel and
Distributed Processing Symposium IPDPS’2004, IEEE Computer Society
Press, 2004.

[8] A. Adams, T. Bu, J. Horowitz, D. Towsley, R. Caceres, N. Duffield, F. Lo-
Presti, S. Mon, and V. Paxson. ―The use of end-to-end multicast
measurements for characterizing internal network behaviour.‖ IEEE
Communications Magazine, 38(5), 2000.

[9] R. Cohen and G. Kaempfer, ―A Unicast-Based Approach for Streaming
Multicast‖ Proc. IEEE INFOCOM, Apr.2001.

[10] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and A.
Singh, ―SplitStream: High-Bandwidth Multicast in Cooperative
Environments‖ Proc. 19th ACM Symp, Oct.2003.

[11] B. Lowekamp, B. Tierney, L. Cottrell, R. Hughes-Jones, T. Kielmann, and
M. Swany, ―A Hierarchy of Network Performance Characteristics for Grid
Applications and Services,‖ Proposed Recommendation GFD-R-P.023,
Global Grid Forum, 2004.

[12] T. Gross, B. Lowekamp, R. Karrer, N. Miller, and P. Steenkiste, ―Design,
Implementation and Evaluation of the Remos Network,‖ J. Grid Computing,
vol. 1, no. 1, pp. 75-93, May 2003.

[13] J. Maassen, R.V. van Nieuwpoort, T. Kielmann, K. Verstoep, and M. den
Burger, ―Middleware Adaptation with the Delphoi Service,‖ Concurrency
and Computation: Practice and Experience, vol. 18, no. 13, pp. 1659-1679,
Nov. 2006.

[14] T. Kielmann, R.F. Hofman, H.E. Bal, A. Plaat, and R.A. Bhoedjang,
―MagPIe: MPI’s Collective Communication Operations for Clustered Wide
Area Systems,‖ Proc. ACM SIGPLAN Symp. Principles and Practice of
Parallel Programming (PPoPP), pp. 131-140, May 1999.

[15] N.T. Karonis, B.R. de Supinski, I. Foster, W. Gropp, E. Lusk, and J.
Bresnahan, ―Exploiting Hierarchy in Parallel Computer Networks to
Optimize Collective Operation Performance,‖ Proc. 14th Int’l Parallel and
Distributed Processing Symp. (IPDPS ’00), pp. 377-384, May 2000.

[16] Y. Cui, B. Li, and K. Nahrstedt, ―On Achieving Optimized Capacity
Utilization in Application Overlay Networks with Multiple Competing
Sessions,‖ Proc. 16th Ann. ACM Symp. Parallelism in Algorithms and
Architectures (SPAA ’04), pp. 160-169, June 2004.

0

20

40

60

80

2 4 8 16

th
ro

u
gh

p
u

t
(M

B
/s

)

Number of Nodes per Cluster

BitTorrent

Robber

RIPD

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March-2012 9

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

[17] M. den Burger, T. Kielmann, and H.E. Bal, ―Balanced Multicasting: High-
Throughput Communication for Grid Applications,‖ Proc. Conf.
Supercomputing (SC ’05), Nov. 2005.

[18] D. Kosti_c, A. Rodriguez, J. Albrecht, and A. Vahdat, ―Bullet: High
Bandwidth Data Dissemination Using an Overlay Mesh,‖ Proc. 19th ACM
Symp. Operating System Principles (SOSP-19), Oct. 2003.

[19] B. Cohen, ―Incentives Build Robustness in BitTorrent,‖ Proc. First
Workshop Economics of Peer-to-Peer Systems, June 2003.

[20] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. Mohr,
―Chainsaw: Eliminating Trees from Overlay Multicast‖ Proc. Fourth Int’l
Workshop Peer-to-Peer Systems (IPTPS ’05), Feb. 2005.

[21] M. den Burger and T. Kielmann, ―MOB: Zero-Configuration High-
Throughput Multicasting for Grid Applications,‖ Proc. 16th IEEE Int’l
Symp. High Performance Distributed Computing (HPDC’07), June 2007.

[22] Philip K.McKinley, Hong Xu, Abdol-Hossein E and Lionel M.Ni ―Unicast-
Based Multicast Communication in Wormhole-Routed Networks‖ IEEE
Tran on Parallen and Dist Systems Dec 1994

[23] C.-C. Chiang, H.-K. Wu, W. Liu and M. Gerla, Routing in Clustered
Multihop, Mobile Wireless Networks with Fading Channel, in: The IEEE
Singapore International Conference on Networks, 1997, pp. 197–211.

